RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [BATCH 2016-19] B.A./B.Sc. SECOND SEMESTER (January – June) 2017 Mid-Semester Examination, March 2017

Date : 15/03/2017

COMPUTER SCIENCE (Honours) Paper : II

Time : 11 am– 1 pm

Full Marks : 50

[Use a separate Answer Book <u>for each group</u>]

<u>Group – A</u>

An	swer	<u>any five</u> questions :	[5×5]								
1.	a) b) c)	What are row major and column major representation of an array? Is it possible to have negative index of an array? Determine the location of X[10][10] when the array is stored as column major. Given each element of array X[20][20] require 2 bytes. Base address is 1000.	[2] [1] [2]								
2.	a) b)	How do you perform a Stack's Pop operation in constant amount of time using a Singly Linked List. Given a circular list, show that the list can be used as a queue by writing function to add and delete elements.									
3.	a) b)	Write a function to split a Doubly Linked List from a specific position. Convert the expression $AB*C-D+E/F*(G+H)$ into postfix expression.	[3] [2]								
4.	Wri a) b)	ite a function to implement following operations : Sort a Doubly Linked List Search a Singly Linked List for a particular element.	[2·5] [2·5]								
5.	a) b) c)	What is ADT (Abstract Data Type)? How do you analyse the performance of insertion and deletion operation in a non-contiguous linear list? What is asymptotic tight bound?	[2] [2] [1]								
6.	a) b) c)	Write down the real life application of Stack. If a Singly Linked List perform last insert and last delete operation to maintain a stack then what is time complexity of Stack's Push and Pop operation in that Singly Linked List? What is the purpose of tail node in a doubly linked list?	[2] [2] [1]								
<u>Group – B</u>											
An	swer	<u>any five</u> questions :	[5×5]								
7.	a) b)	Discuss about the different type of errors committed in numerical computation. If $f(x) = 2\cos x - 5x$, find the relative percentage error in $f(x)$ for $x = 0$, if the error is $x = 0.02$.	[3] [2]								
8.	a)	Estimate the missing term in the following table :	[2.5]								

- b) What is the restriction on Lagrangian functions? State and proof also. [2.5]

9.	a)	Using suitable interpolation formula find the value of $f(1 \cdot 1)$ from the following table : x : 0 1 2 3									
							3				
		f(x)	:	1	2	11	34				
	b)	If h is very small, prove that $\Delta^{n+1} f(x_0) \approx h^{n+1} f^{n+1}(x_0)$. [2]									
10.	10. a) Evaluate the composite Simpson's One-third Rule with the help of general Gauss-Leg Quadrature formula.										
	b) Explain the geometrical interpretation of trapezoidal Rule.										
11.	a)	$3x^{2}$)dx, taking 10 intervals, by trapezoidal Rule.									
	ind the absolute and relative errors in your result.	[5]									
12.	12. Compute one root of $e^x - 3x = 0$, correct to two decimal places which between 1 and 2, using the bisection method.										

× -